
N87-18856
ON DETERMINING IMPORTANT ASPECTS OF MATHEMATICAL MODEl.S:

APPLICATION TO PROBLEMS IN PHYSICS AND CHEMISTRY x

Herschel RabRz

Princeton University

Department of Chemistry

Princeton, NJ

SUMMARY

Mathematical modellin8 must always deal with two 8eneral probIems.

First, the form, parameters or distributed functions in a mathematical mode]

are often Jmprecisel), known and their impact on desired objectives or

observables is an important issue. Second, even when the components in a

mode] are "known" there always remains the fundamental question concerrfin 8

the importance and interrelationship between the various components of the

system. The use of parametric and functional 8radient sensitivity anal),sJs

techrfiques iS considered for models described b), partial differential

equations. By interchansJn8 appropriate dependent and independent variables,

questions of inverse sensitivity may be addressed to 8ain Jnsisht into the

inversion of observational data for parameter and function identification in

mathematical models. It may be arsued that the presence of a subset of

don%inantl), stron 8 coupled dependent variables will result in the overall system

sensitivity behavior co]]apsin 8 into a simple set of soalin8 and self similarity

relations amonsst elements of the entire matrix of sensitivity coefficients.

These 8eneral tools are 8enerio in nature, but the present paper will

emphasize their application to problems arisJn8 in selected areas of physics

and chemistry.

INTRODUCTION

Mathematical modellin8 and anal),ms has been a traditionalI), active area

in ensineerin8 and this is especially true in recent years with the ready

availability of hish-speed d/sJtal computers. Such model]in8 efforts have man)'

8ca]s, inoludJn 8 desisn, optimization and mereI), understandln8 the systems'

components. As an adjunct to these efforts, the tools of sensitivity anal),sJs

provide a natural means to aid in an of these 8oals and the development of

the subject in ensineerin 8 has been especially focused on applications to

desisn and optimization. The ultimate drJvin8 force behind all these efforts is

certain]), the practical issues of increased reliability, efficiency, etc.

An interesting contrast with the modelUns/sensitivJty analysis efforts

primarily in ensJneerin 8 occurs upon consideration of analosous problems in

the "fundamental" areas of chemistry and ph),sics. The first point of contrast

is that issues of desisn and optimization are frequently not relevant in basic
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research studies of chemistry and physics (studies involving problems Jn

applied physics, industrial chen_dcal processes, etc. would be best categol-Jzed

as engineerin 8) . The term "modelling" is also rarely used Jn the scientific

disciplines and the basic thrust Js usually for an attainment of system

understandin 8. In particular, control variables frequently found in engJneerin 8

problems are often absent in the physical and chemical events occurTJng at

atomic and molecular scales. The lack of practical motivation and these

inherent differences between engineerin 8 and scJentifdo problems has apparently

resulted Jn only a recent realization that the tools of sensitivity analysis have a

potentially valuable contribution to make in chemistry and physics. 1-6

The differences cited above obscure the overall basic similarity between

mathematically defined engineering and scientific problems. Their common

foundation lies in their basic input-output nature. In addition, the particular

mathematical formulations involved can be quite similar even though the

physical interpretation is different (e.g., the equations of stationary quantum

mechanics are exactly those of classical linear waves). From this general

perspective, a common set of tools may be developed within the framework of

sensitivity analysis of benefit to all the relevant disciplines making use of

mathematical modelling techniques. The present paper will succinctly review

current activit_ with the topics being primarily in the area of chemical

physics. Special emphasis will be given viewing problems from a functional

perspective rather than treating them as described by a discrete set of input

parameters. This approach is essential tn many scientific applications and

o[ten has a similar broad basis in engineerin 8 . Although the particular

applications discussed in the paper require more information than provided

here for a full appreciation of their signlfioance , they should be viewed in a

generic context for analogous applications in other possible areas of interest

to the reader. Finally, due to the brief nature of this paper, no attempt will

be made to thoroughly review all recent developments in sensitivity analysis as

applied to chemical physics problems; a series of recent review articles is

available to cover this literature. I-6

BASIC CONCEPTS OF FUNCTIONAL SENSITFvUTY ANAI,YSIS

The problems of interest Jn chenlical physics at the alonzo scale or

macro scale are typically described by differential equations of a boundary

value and/or initial value nature. For example, Sohrodinger's equation in

quantum mechanics has the form

[_ 88t _22m V2 ÷ V(r)]_ = 0

and the equations of mass conservation Jn chen_cal kineIJcs have the form

ac_ Ci - DiV2Ci - fi(C ) = 0
_t

These latter equations follow conventional notation where _ is Plancks

constant, m Js the mass of the pardo]e interacting w_th potential V(_r) and its

wavefunction ]r(_r,t) is evaluated at point _r and time t, while C i is the i-th



chemical species concentration, D i is the corresponding diffusion coefficient

and the reactive flux Ci is generally a nonlinear function o£ the
concentrations. Although Schrodinger's equation is rigorously the only valid
approach for treating dynamics at the atomic scale, classical mechanics is a

very popular and often quite accurate approach to treating the motion of

atoms and molecules. In this case, Hamilton's equations

aqi 8H 8Pi aH

at apj ' _-_ aqj

would apply where H(R,g) is the Hamtltontan with i-th coordinate qi and
momentum Pi- Various other dynamical equations also occur in statistical

mechanics and in models occurring in all aspects of chemical physics. A

general situation commonly arising, included in the equations above, is the

appearance of coefficients which are functions of either the system

independent or dependent variables. For example, the potential V(_r) plays
this role in Schrodinger's equation. These functions may be thought of as

input, and two broad categories will arise. First, the form of these functions

may be imprecisely known due to a lack of fun understanding of the system

or simply imprecise measurements defining the structure of the functions.

Second, even if the input functions are known precisely, there is typically a

very poor understanding of how the form or structure of these functions

influences the behavior of the equation solutions or observables. As

mentioned in the Introduction, the possibility of varying these functions for the

purpose of optimization will not be explicitly considered here since this is not

often the case. Therefore, the role of sensitivity analysis in chemistry and

physics is largely to provide a means to probe the interrelationship between

the input and output functions (i.e., deterrrune the important aspects of the

system) .

]n order to better quantify the above discussion, we may generally write

any of the appropriate dii:ferential equations in the following form

Li(r,t,__ ) : 0 (t)

where Li is the i-th differential operator typically being a nonlinear function of

the elements of the output solution vector @(r,t). Appropriate initial and/or

boundary conditions would be given in order to completely specify the

problem. The parametric functional nature of the differential equations is

evident through the arguments ot Lj in Eq. (I) depending on position r and

time t. In addition, the boundary conditions may be functions of time and

the initial conditions may be functions of position also acting as another class

of input functions for consideration. Regardless of the circumstance, we may

generally denote the vector of input functions as _R([,t) and the first variation

of Eq. (I) becomes

__ at'i O_n (r, t) O[. i

n
= 0 (2)

The first of these terms in Eq. (2) involves the system Jacobian 81418_ n,

and the second term is the explicR functional derivative of the operator with



respect to the i.-th member of the input function set. The solution to this

linear differential equation produces the functional derivative matrix

6_n(_r,t)/0_lg(r',t') 8ivin8 the response of the n-th output at position r and

time t with respect to a disturbance of the l-th input function a position _r'

and time t' such that

84_n(r,t ) :- -_--_ dr_'dt' /)_n(r't) /)i_t(r' ,t') (3)___j 8n_ (r' ,t' )

where /)f_I(_r',t') is an arbitrary infinitesimal functional variation. The matrix

solution to Eq. (2) constitutes what is sometimes referred to as the forward

sensitivity matrix. All of the general applications of sensitivity analysis in

chemical physics have focused on an examination of the sensitivity matrix

elements and perhaps most importantly their manipulation to address other

questions besides mere input-output relations. This point wiU be emphasized

later in this paper.

Since Eq. (2) is linear, it is quite natural to define a Green's function

matrix with elements /)_n(r_,t)/()_£(_r',t') havin 8 the 8eneral interpretation of

the response of _n to a disturbance of the flux 3t of the _-th member of

the d__ependent variable set. This matrix satisfies the following equation

ai't OCn(L,t)
n a_ n O_i I (_r',t')

= 8it 0([-r') 8(t-t') (z,)

The solution to Eq. (2) may be directly expressed in terms of the

Green's function solution to Eq. (4). In some cases, this can be a practical

numerical procedure but more importantly the elements of the Green's function

matrix have direct physical sisnificance and in principle measurements in the

laboratory could be performed to determine them. This latter point is

especially important since as commented above many basic problems in

chemistry and physics do not inherently contain laboratory control functions or

variables.

Equation (2) produces the first order functional perturbation coefficients

to the nominal solution of Eq. (1) as evidenced by Eq. (3). Due care _s

needed if the physics corresponds to a desenerative perturbation problem.

Standard procedures exist in this case correspondin 8 to the introduction of

directional derivatives. A variety of numerical techniques have been developed

for so]wing Eqs. (2) or (4), and detsd]ed information may be found in the

literature. In 8eneral, it seems most efficient to solve Eq. (2) by maximally

taking advantaRe of its structure in relation to the often employed Newton

linearization schemes applied to Eq. (_).

]n practice, the coupled differential equations in Eq. (_) are often highly

nonlinear and an interestin R type of scaling behavior has been found under

certain conditions. _* This situation has not been explored for the case of

functional variations, except for the Green's function, and for that reason we

shall consider it here in terms of discrete system parameters denoted by the

vector _. Supposin 8 that a single dominant d__@_pendent variable exists one

misht expect that a variation in any siren system parameter would show up as

significant, provided that the dominant variable siRnificant]y responded.

_H. Rabitz and M. Smooke, "Scaling Relations and Self Similarity

Conditions in Strons]y Coupled Dynamical Systems', J. Phys. Chem., in

progress.
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Without loss of 8enerality, we may take the dominant dependent variable

as _l(t,_) where time t is taken as the only independent "coordinate" for

simplicity. Often the identification of this dominant variable seems to be

associated with the most stronsly coupled nonlinear member entering the

differential equations. Under the assumption of stron 8 dominant dependence,

we may approximate the remalnin 8 dependent varJab]es as

_n(t,_q) _ _n(_Ct,a)) (5)

where _,n is an appropriate function. The important point is that the

parameter dependence of all the remainin 8 dependent variables is

approximately driven through that of the dominant dependent variable.

This is in keepin 8 with the notion that the dominant variable will pass

judsment over any parameter variation resardin 8 its sisnificanoe to any of the

remalnin8 dependent variables. A natura] consequence of the approximation

in Eq. (5) is the scalin8 relation

 -&ii j " la-h--j la-Fj (6)

which expresses all the system sensitivities in terms of those of the dominant

dependent variable and simple temporal slope information. The full

significance of stalin 8 behavior has not been established althouBh it may have

wide applicability in nonlinear systems outside of chemistry and physics.

A MENU OF SENSITIVITY APPLICATIONS IN GHEMIOAI, PHYSIOS

It is beyond the scope and purpose of this paper to present detailed,

elaborate physical analyses of particular models or problems. Rather, the

examples should be viewed for their 8eneric behavior and as illustrations of

the type of sensitivity technoloBy existin 8 in chemical physics (specific citations

to the literature can be found in refs. 2-6). The best means to present this

information appears to be in the narrative tabular form Siren below. Finally,

many of the examples carried out thus far in chemical physics have considered

discrete parameter systems rather than those prescribed from a funotionai

point of view. This approach was taken even thouBh the physical problems

were functional in nature. A]thouBh these studies were often insiBhtful , a

number of cases clearly indicate that the use of a small number of discrete

parameters to represent typical continuous input functions can 8ive mis]eadin8

sensitivity results at times. This comment would most assuredly be applicable

to situations outside the realm of chemical physics.

A. Forward Sensitivities

A direct analysis of the 8radients introduced in Eq. (2) comprises the

forward problem. The name forward results from the fact that the system is

bein 8 analyzed from the forward direction whereby the response of the output

to a disturbance of the input is examined. The masnitude , siBn and 8eneral



behavior of the sensitivity coefficients as a function of their arguments is of

concern. This comment applies to all of the other applications in the

following paragraphs. A wealth of information can be gleaned by such an

analysis and a number of applications have been carried forth. For example,

in the case of molecular collisions, the role of different regions of the

potential function upon the collision cross section has been explored. For

elastic, inelastic and reactive scattering, a wide variety of problems have been

treated in chemical kinetics encompassing temporal, steady-state spatial and

unsteady spatial systems.

B. Inverse Sensitivities

The forward sensitivities in paragraph A correspond to the logical

definition of the system parameters or input functions as independent variables

and the system observables as dependent variables. The original physical

problem is, of course, cast in this framework but many laboratory or field

measurements are actually done for the purpose of inversion to better quantify

a model. In this sense, one may use a "reasonable" zeroth order mode] and

the accompanying forward sensitivities to calculate corresponding inverse

sensitivities. These may be denoted as Oflj[([,t)/0_n(_r',t') and it is evident

that they give information on the infinitesimal response of the J[-th function in

the model to a disturbance of the n-th member of the observation set.

Knowledge of these gradients can be used as a means to design possible

experiments for the ultimate purpose of inversion. In principle, they may also

be employed in an iterative inversion process with real data. Thus far,

applications in chemical physics have been confined to the former case.

Illustrations have been performed for inverse molecular scattering and chemical

kinetics mechanism identification. These inverse sensitivities are the first

members of what has been referred to as derived sensitivities since they may

be derived from the forward set in paragraph A above. The forward and

inverse sensitivities are orthogonal complements of each other and more

generally they are related through Legendre type transformations familiar in

thermodynamics. Exactly the same techniques are employed to generate the

specialized sensitivities in paragraph C and D below.

C. Parameter Interrelationships

As implied Jn paragraph B, one may relax the constraints on the original

definition of the system dependent and independent variables or some portion

thereof. In this fashion, it is possible to calculate the possible response of

one system input function to a disturbance of another corresponding to the

gradients 6fll([,t)/Oflk(r',t'). Nonzero values for these parameter correlation

gradients would imply a relationship between the input functions under the

p__a_rti_'cularconstraint relaxing the role of the system dependent and independent

variables. The behavior of these gradients has implication [or the uniqueness

o[ the system model.
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D. Observation Interrelationships

A family of gradients exactly analosous to those in parasraph C can be

8enerated to study the relationship between different possible observations or

dependent variables in a system. Tilts is a physically meaninsfu] question

since all possible observations or system behaviors derive from the same

under]yJn8 model. The particular gradients Jn this case have the form

{5_n([,t)/_)_m(r_',t') where it is understood that an implied exchanse of

dependent and independent variables has occurred. As with the inverse

8radients in parasraph B, these new sensitivities are also of use in the

desisn of laboratory or field measurements. Nonzero values for these

8radients imply a relationship between two possible observations and in that

case serious consideration should be siren to whether it is worthwhile to

actually perform both measurements. A hierarchy of observations could be

established based on the magnitude of these families of 8radients. Little

application has thus far been carried out a]on8 these lines.

E. Flux Disturbance Sensitivities

The Green's function introduced as the solution to Eq. (4) corresponds

to the literal situation of disturbin 8 one of the system dependent variables and

monitorJn 8 a response in another. Knowledse of such responses provides a

detailed map of the interconnectivity produced by the physical model. An

interestin 8 point in this resard concerns the fact that the dynarrdc response of

the actual model can be quite distinct from that implied by the Idnematic

structure of the differential equations. A mappin 8 of the system dependent

variable interconnectivJty can 8ire valuable insiEht into which components or

portions of a model are of actual sisnifdcance to the questions or observations

of concern. Green's functions are routinely calculated in a variety of

applications in chemical physics for these reasons.

F. Objective Function Sensitivity Analysis

As discussed in the introduction, many problems in chemical physics are

not posed with well understood observational objectives before actually

investisatin 8 the problem, indeed, the general role of sensitivity analysis in

chemical physics is often to simply identify interestin 8 objectives or model

components worth further study theoretically and experimentally. This

perspective is typically at variance with the situation found in ensineerin 8

where the problem is often first posed by statin 8 the desired objective, in

8eneral, any observable feature or objective of the system may be written as

a functional F[_] of the system dependent variable vector. Direct functional

differentiation of this object will probe the desired quantity of interest in a

stralshtforward fashion. An interestin8 point occurs when this objective can

be identified before actually solvJn 8 the model, in this circumstance, the well

know adjoint sensttivlty analysis method may be employed to eEficlentiy

calculate the sensltivittes of the system objectives. This latter procedure has

only been used sparsely in chemical physics thus far for the evident reasons

stated above.



G. Model Reduction

A natural objective in all modellin8 efforts is to reduce the system
complexity to a level suitable for the questions or tasks at hand. A

procedure such as this is sometimes referred to as ]umpins, and sensitivity

coefficients provide information relevant to this goal. The forward sensitivity

coefficients in paragraph A may be exan_ned for this purpose and this is

routinely performed. Related more sophisticated manipulation of these forward
sensitivities can also be considered but much more work needs to be done in

this area to optimally draw on the full variety of sensitivity coefficients. An

ever present danser in system reduction is subsequent misuse of the simplified

model in situations contrary to the assumptions under]yJn8 the lumping
procedure; in general, model reduction needs to be performed again for each

new objective.

H. Model Expansion

Although model reduction using sensitivity or other techniques represents

a well established objective, a much more difficult approach to mode]

improvement entails the expansion of an oversimplified model to a proper ]eve]

of sophistication. In 8eneral, this problem is not well posed, but there is a

simple quantitative indicator of model expansion that can be performed using

sensitivity analysis. In particular, a common circumstance arises when the

actual model calculations are performed on a simplified system drawn from a

larser body of facts or information as input. For example in the case of

chemical kinetics, often hundreds of possible chemical reactions could be

identified as potentially important beforehand while typically only a small subset

would actually be included in the first zeroth order model. In essence, one

may view the results of such a calculation as involving the full extended mode]

but with the appropriate parameters set to a null value. Although the nominal

solution clearly does not contain these parameters, the gradient of the

solution may still be nonzero. Therefore, the sensitivity o[ the additional

parameters about their nominal null values can be quite easily calculated if

(a) an extended "shoppin 8 list" o£ possible additional system components is

available and (b) if the additional components do not introduce further

dependent variables. Such a sensitivity to missing model components can be

used to que lik_@ly new parameters for introduction into the model at their

finite realistic values, limited applications of this type have been carried out
in chemical kinetics.

I. Parameter Space Mappin8

Both functional and parametric 8radient sensitivity analysis techniques are

inherently local in nature in that the gradients are evaluated at a nominal

point in parameter or input function space. Such an analysis seems often

quite adequate to establish which aspects of a model are important. As

commented earlier, this latter 8oal is often the primary motivation for

applications in chemistry and physics. On the other hand, in ensineerJng

and certain scientific applications optimization is the ultimate objective.



Inherently, an optimization entails a search through parameter space and

gradient techniques have an evident limitation. No satisfactory solution is

available for circumventing this difficulty, but some interesting new tools

involving Lie group techniques seem especially attractive. This approach

considers the calculation of a lie generator (first order differential operator)

for prescribing transformations throughout the parameter space. At this stage

only preliminary mathematical analysis and elementary applications have been
considered.

CONCLUDING COMMENTS

Sensitivity analysis clearly provides a powerful set of systematic tools to

analyze models for their physical content and mathematical behavior. Although

extensive applications to scientific problems are relatively recent, there is

much to be gained by an exchange of techniques and ideas between the

engineering and scientific disciplines. Finally, one caveat always worth

keeping in mind is that the conclusions of a sensitivity analysis will always be

predicated on the si8nificance or validity of the underlying model. However,

such caution should never be used as an ar8ument to not perform a

sensitivity analysis, since any model calculations without a sensitivity analysis
will be far tess worthwhile.
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